Research progress on the active ingredients of traditional Chinese medicine against hepatic fibrosis by regulating the MAPK signaling pathway

HUANG Fujing, XIE Xingxing, LIU Xue, FAN Ling, YU Zhigang, ZHANG Jinjuan

Chinese Journal of Hospital Pharmacy ›› 2025, Vol. 45 ›› Issue (2) : 225-233.

PDF(1256 KB)
PDF(1256 KB)
Chinese Journal of Hospital Pharmacy ›› 2025, Vol. 45 ›› Issue (2) : 225-233. DOI: 10.13286/j.1001-5213.2025.02.17
Review

Research progress on the active ingredients of traditional Chinese medicine against hepatic fibrosis by regulating the MAPK signaling pathway

Author information +
History +

Abstract

Hepatic fibrosis (HF) is a reversible pathological process associated with various chronic liver diseases. If left untreated, it can progress to severe pathological stages like cirrhosis and liver cancer, significantly impacting the health and quality of life. Currently, available clinical treatments for HF demonstrate limited efficacy, highlighting the urgent need for new drugs or active ingredients against HF. The mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial regulatory role in cell proliferation, differentiation, and apoptosis, making it a key target in the modulation of HF development. Research has shown that interfering with the activation of MAPK signaling pathways through active ingredients of traditional Chinese medicine (TCM) herbals can yield positive outcomes in combating HF. This review examined the role of the MAPK signaling pathway in regulating HF and explored the therapeutic potential of active ingredients of TCM herbals targeting this pathway. Our aim is to provide insights that may contribute to the future development of novel drugs against HF.

Key words

hepatic fibrosis / MAPK signaling pathway / active ingredients of traditional Chinese medicine / research progress

Cite this article

Download Citations
HUANG Fujing, XIE Xingxing, LIU Xue, FAN Ling, YU Zhigang, ZHANG Jinjuan. Research progress on the active ingredients of traditional Chinese medicine against hepatic fibrosis by regulating the MAPK signaling pathway[J]. Chinese Journal of Hospital Pharmacy, 2025, 45(2): 225-233 https://doi.org/10.13286/j.1001-5213.2025.02.17
肝纤维化(hepatic fibrosis,HF)是酒精、病毒、药物等多种因素导致肝脏损伤后,肝脏以胶原蛋白代替死亡肝细胞的反复损伤-修复反应1,是慢性肝炎等肝脏疾病向肝硬化发展的关键环节。肝组织内细胞外基质(extracellular matrix,ECM)过度沉积,肝组织正常结构遭到破坏,纤维瘢痕增多是其主要的病理特点2。研究显示,HF过程是可逆的,在病程早期采取有效治疗措施可以使HF发生逆转3。反之,HF可能进一步发展为肝硬化或肝癌4,对患者健康造成严重影响。目前临床上尚无理想的抗HF药物,因此,进一步探讨HF的发病机制和研发新型抗肝纤维化药物成了临床迫切需要。
丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一种蛋白丝氨酸/苏氨酸激酶,广泛参与细胞基因表达、增殖、凋亡和分化等过程的调节5-6。研究证实,MAPK信号通路与HF的发展密切相关,是抗HF的关键靶点之一,对开发新的抗纤维化药物具有积极意义7。中药因其来源广泛、价格低廉、不良反应少等独特优势被认为是开发新型抗HF药物的重要来源,开发潜力巨大。大量研究证实中药活性成分可通过MAPK信号通路有效调控HF的发展8。因此,本文从MAPK信号通路调控HF的作用机制及中药单体通过MAPK信号通路抗HF两方面进行综述,以期为中药抗HF的研究以及新药研发提供思路。

1 MAPK信号通路

MAPK信号通路由3个层次的激酶组成:MAPK、MAPK激酶(mitogen-activated protein kinase kinase,MAPKK)和MAPK激酶(mitogen-activated protein kinase kinasekinase,MAPKKK)。MAPKKK位于上游,其是通过细胞外信号诱导的磷酸化事件被激活;当MAPKKK被激活,可磷酸化MAPKK,使其激活;激活后的MAPKK通过在MAPK激酶结构域Ⅷ亚结构域的激活环上,对Thr-X-Tyr基序中的苏氨酸(Thr)和酪氨酸(Tyr)残基进行磷酸化,从而实现MAPK的激活。这3个层次的激酶依次通过磷酸化下游分子使其激活,形成了一个信号传递级联反应9。这一磷酸化事件是MAPK介导细胞活动调节的关键机制,在细胞生理和病理过程中发挥着至关重要的作用10
MAPKKK家族中研究较清楚的是快速增殖肉瘤激酶(rapidly accelerated fibrosarcoma,Raf)。Raf蛋白具有丝氨酸/苏氨酸激酶活性,其通过磷酸化下游的丝裂原活化蛋白激酶(mitogen-activated protein kinase kinase,MEK,属于MAPKK家族),进而激活下游的MAPK,启动一系列的磷酸化反应,最终导致多种细胞内反应。同时,Raf也可被上游分子激活,其作为信号转导通路中的中介,将信号从细胞膜传递至细胞核。Raf可被上游的Ras蛋白活化。Ras蛋白是一类小型三磷酸鸟苷(guanine triphosphate,GTP)酶,其能够结合和解离GTP,在结合GTP时处于活性状态,在水解GTP成二磷酸鸟苷(guanine diphosphate,GDP)时转变为非活性状态。Ras通过在GTP与GDP之间的转换循环使其能够作为分子开关,调控多种细胞过程11。此外,Raf还可以被上游的 Ras同源基因家族成员A(ras homolog gene family,Member A,RhoA)激活,产生多种细胞生物学效应。
MAPKK作为中间层,被MAPKKK磷酸化激活,然后通过磷酸化激活MAPK。MAPKK蛋白家族的主要成员有MEK1/2、MEK3/6、MEK4/7等,他们分别激活下游MAPK家族的不同成员。MEK1/2通过磷酸化并激活MAPK家族的细胞外信号调节激酶(extracellular regulated protein kinases,ERK)1/2;MEK3/6主要负责激活MAPK家族的p38;MEK4/7激活MAPK家族的c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)。
MAPK家族成员众多,分为典型MAPK和非典型MAPK两种类型。典型MAPK主要包括ERK1/2、JNK1/2/3、p38亚型(α、β、γ)以及细胞外信号调节激酶5(extracelluar regulated protein kinases-5,ERK5),非典型MAPK则主要包括ERK3/4、ERK7和Nemo样激酶(nemo-like kinase,NLK)等12
ERK1/2、JNK和p38亚型因在细胞信号传导中的关键作用而成为研究焦点。其中,ERK1/2通过磷酸化c-Fos蛋白(cellular oncogene fos,c-Fos)和细胞原癌基因jun(cellular oncogene Jun,c-Jun)等转录因子,促进激活蛋白-1(activator protein 1, AP-1)复合体形成,推动细胞从G1期向S期过渡,从而调控细胞增殖13。ERK1/2通过磷酸化Bcl-2相互作用介质蛋白(Bcl-2 interacting mediator of cell death,Bim)促进其从抗凋亡蛋白髓细胞白血病病毒样序列1(myeloid cell leukemia 1,Mcl-1)和B细胞淋巴瘤-x(B-cell lymphoma-extra large,Bcl-x)上解离,从而影响细胞的凋亡14。此外,ERK1/2还参与细胞应激反应和代谢调控,通过影响氧化代谢和能量平衡,间接影响细胞的生存15
p38 MAPK参与调控细胞增殖、凋亡、正常免疫反应及炎症反应等重要生理过程,其在免疫和炎症反应中扮演着核心角色16。p38 MAPK在氧化应激、电离辐射或趋化因子等生理或病理刺激下被激活,进而通过其下游效应分子,如核转录因子-κB(nuclear factor-kappa B,NF-κB)、MAPK相互作用激酶1(mitogen-activated protein kinase-interacting kinase 1,MNK1)以及MAPK活化蛋白激酶2/3(MAP kinase-activated protein kinase 2/3,MK2/3),精细调控细胞内的信号传导网络。这些信号分子的活性变化直接影响促炎因子的表达和分泌,从而在细胞炎症反应中发挥调节作用。
JNK在细胞增殖和凋亡过程中同样发挥着重要作用。JNK通过磷酸化c-Jun,促进转录激活因子AP-1的合成,从而对细胞增殖进行调控。此外,活化的JNK能够磷酸化p53和p73等蛋白,这些蛋白进一步调控B细胞淋巴瘤-2相关X蛋白(BCL2-associated X protein,Bax)和P53上调凋亡调节因子(P53 upregulated modulator of apoptosis,PUMA)等促凋亡基因的表达,诱导细胞凋亡17,见图1
Fig 1 Schematic representation of the MAPK signaling cascade

图1 MAPK信号级联示意图

Full size|PPT slide

2 MAPK信号通路调控HF的作用机制

2.1 调控细胞增殖活化

当前研究广泛认为,肝星状细胞(hepatic stellate cells,HSC)的增殖与活化是推动HF发生发展的关键环节18-19。在肝组织受损后,原本处于静止状态的HSC迅速被激活,进入增殖状态,并转化为具有肌成纤维细胞样特征的细胞。HSC活化后使α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的合成急剧增加,Ⅰ型胶原(collagen Ⅰ,Col Ⅰ)、Ⅲ型胶原(collagen Ⅲ,Col Ⅲ)等 ECM主要成分进行性累积而使肝脏发生纤维化。因此,抑制HSC的增殖与活化是抗HF的关键环节之一。
MAPK信号通路参与了HSC的增殖活化,进而参与HF。研究表明,调控MAPK信号通路上的关键分子,可引起HSC的改变。Marra等20应用ERK抑制剂PD98059干预HSC后,激活的HSC增殖显著受到抑制。Jeng等21的研究表明ERK2可能通过调控细胞增殖的关键蛋白细胞周期蛋白D1(cyclin dependent kinase inhibitor 1,Cyclin D1)的表达水平来调节HSC的增殖。研究发现,乙醛刺激下的HSC增殖显著增加,同时细胞内磷酸化p38 MAPK的水平也显著升高。然而,当HSC经p38 MAPK特异性抑制剂SB203580处理后,其增殖显著受到抑制,且抑制效果与SB203580的浓度呈剂量依赖性22。这种抑制作用可能与p38 MAPK被抑制后HSC中调控细胞增殖的转录调节因子C-myc基因表达下调有关,提示p38 MAPK在调控HSC增殖中扮演了关键角色23。张亚平等24的研究发现,白细胞介素-1β(interleukin-1β,IL-1β)作用于HSC后,显著促进HSC的增殖,而当HSC经特异性JNK阻断剂SP600125预处理后再给予IL-1β刺激时,IL-1β对HSC增殖的促进作用受到抑制。

2.2 调控炎症反应

炎症反应是推动HF发展的关键驱动因素之一。持续的肝细胞损伤构成HF发生与发展的基础。当肝细胞受损或受脂多糖、游离脂肪酸等肝外信号刺激时,肝脏免疫细胞会迅速响应。单核细胞通过产生cc趋化因子配体2[chemokine (C-C Motif) ligand 2,CCL2]募集转化生长因子-β(transforming growth factor-β,TGF-β),而中性粒细胞则通过分泌白细胞介素-17(interleukin-17,IL-17)激活HSC,促进纤维形成。同时,受损肝细胞释放的危险信号(如P2Y14配体,P2Y purinoceptor 14,P2Y14L)和警报(如线粒体代谢物)进一步增强HSC的活化25,促进HF的发展。此外,HF小鼠模型中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白介素-6(interleukin-6,IL-6)等炎症因子的水平显著升高26,抑制这些促炎因子的活性能够缓解HF的进展27
MAPK信号通路与炎症反应密切相关,MAPK信号通路通过调控炎症反应,对HF的发展产生重要影响。研究表明,p38 MAPK的激活能够促进核因子κB抑制蛋白α(inhibitor of κBα,IκBα)的双磷酸化和降解,从而直接激活炎症反应经典通路NF-κB信号通路28。在四氯化碳(carbon tetrachloride,CCl4)诱导的HF小鼠模型中,NF-κB p65和p38 MAPK的磷酸化水平显著升高,同时炎症介质如IL-1β、IL-6、IL-12、TGF-β1、TNF-α和诱导型一氧化氮合成酶(inducible nitric oxide synthase,iNOS)的水平也明显上升29。通过抑制p38 MAPK/NF-κB信号通路,炎症介质的水平显著降低,有效缓解了小鼠肝纤维化的程度。蔡强等30研究发现,人参皂苷Rh2通过调节TNF/MAPK和NF-κB信号通路,抑制TNF-α、IL-6、IL-1β、iNOS和环氧化酶-2(cyclooxygenase-2,COX2)的表达,发挥其抗HF作用。

2.3 调控氧化应激

氧化应激是HF发展的核心分子机制之一。活性氧(reactive oxygen species,ROS)及其衍生的脂质过氧化产物,如4-羟基-2,3-壬烯醛(4-hydroxynonenal,HNE)和丙二醛(malondialdehyde,MDA),可直接激活HSC,或通过造成氧化损伤,间接触发肝细胞炎症和凋亡,进一步促进HSC活化和ECM累积31。此外,ROS所介导的蛋白激酶B(protein kinase B,Akt)和MAPK的磷酸化激活,增强AP-1的DNA结合能力,从而促进Col Ⅰ和TGF-β1等纤维化相关因子的表达,加速HF的发展进程32。研究指出,有效抑制氧化损伤对于预防甚至逆转HF具有重要意义33
氧化应激还激活了MAPK信号通路34,MAPK信号通路在氧化应激反应中调控HF进展。HNE通过激活JNK,提高c-Jun蛋白水平,促进其与AP-1的结合,进一步上调HSC中Col Ⅰ基因的表达,加速纤维化进程35。在二甲基亚硝胺(N-nitrosodimethylamine,DMN)或CCl4诱导的HF大鼠模型中,观察到与HF相关的MDA和ROS水平显著升高,同时肝脏中的p38 MAPK、ERK1/2和JNK发生显著磷酸化,抗氧化蛋白酶( glutathione S-transferase alpha 3,GSTA3)水平降低。应用氟芬尼酮后,氧化应激生物标志物的水平出现逆转,表明氧化应激损伤得到抑制,HF程度有所减轻36

2.4 调控细胞凋亡

细胞凋亡作为一种程序性细胞死亡机制,与HF的发生和发展紧密相关。研究表明,HSC在吞噬凋亡小体后,会由静止状态转化为肌成纤维细胞样状态,细胞内TGF-β和Col Ⅰ的表达水平上升,导致HF,而纤维化进程又反过来促使肝细胞凋亡37
MAPK信号通路在调控细胞凋亡方面扮演着重要角色,在肝细胞凋亡和HF发展中有重要作用。p38 MAPK能够诱导线粒体依赖性的细胞凋亡,其活化形式促进Bax和Bim向线粒体易位,抑制Bcl-2,并诱导半胱氨酸天冬氨酸特异性蛋白酶-3(Caspase-3)的激活。p38 MAPK信号与Bcl-2/Bax信号可能相互影响,共同参与HF的调控过程38-39。Wang等40研究发现,银杏叶提取物能够通过抑制p38 MAPK和NF-κB p65信号通路,降低Bax表达并提高Bcl-2表达,抑制Caspase-3活化,从而抑制肝细胞凋亡,减轻大鼠肝纤维化的程度。

2.5 其他

RhoA是一种小G蛋白,其属于Ras超家族的Rho家族蛋白,具有GTP酶活性,能够调节细胞增殖、凋亡和迁移等多种生物学行为。研究显示,RhoA通过激活MAPK信号通路的上游蛋白Raf,激活后的Raf进一步激活MEK,而MEK则促进ERK和JNK的磷酸化,从而推动HF的发生发展41NR4A1基因编码的转录调控因子(nuclear receptor subfamily 4 group A member 1,Nur77)是一种孤儿核受体,属于NR4A家族成员,参与细胞增殖、凋亡和分化等生物过程。研究显示,Nur77能够使凋亡信号调节激酶1(apoptosis signal-regulating kinase 1,ASK1,是一种MAPKKK)磷酸化,活化的ASK1直接激活MEK3/6,进而促进p38 MAPK的磷酸化,影响HF的发展进程42。见图2
Fig 2 Schematic representation of the MAPK signal transduction network and its molecular regulatory mechanisms

图2 MAPK信号转导网络及其分子调控机制

Full size|PPT slide

3 中药单体基于MAPK信号通路治疗HF

3.1 黄酮类

3.1.1 槲皮素

槲皮素是一种具有抗炎、抗氧化和抗肿瘤等活性的黄酮类化合物,三七、银杏等药用植物富含该物质43。研究显示,槲皮素通过调节p38 MAPK和NF-κB/IκBα信号通路,抑制炎症反应和HSC活化,下调TNF-α、IL-6、α-SMA、Ⅰ型胶原蛋白α1(collagen type Ⅰ alpha 1,COL1A1)、COL1A2和肌结蛋白(desmin),降低组织抑制金属蛋白酶(tissue inhibitor of metalloproteinases-1,TIMP-1)和基质金属蛋白酶(matrix metalloproteinase-1,MMP-1)的比值,促进ECM降解,增加Bcl-2和Bax的比率,抑制Caspase-3的激活,减少肝细胞凋亡,从而抑制HF的进展44

3.1.2 异鼠李素

异鼠李素是从沙棘中分离得到的天然黄酮类化合物,具有抗肿瘤、抗炎、抗氧化和神经保护的作用45。Liu等46发现,异鼠李素可以减少Kupffer细胞的募集,抑制HSC活化和自噬,降低α- SMA、Col Ⅰ、TIMP1、p-Smad3、p-p38 MAPK的表达,升高过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)、基质金属蛋白酶(matrix metulloproteinase,MMP)2表达,减少ECM累积,表明异甘草素可以通过调控TGF-β1/Smad3和TGF-β1/p38 MAPK信号通路,发挥其抗HF作用。

3.1.3 藤黄酸

藤黄酸是植物藤黄的主要活性成分,是一种具有抗炎、抗氧化和抗肿瘤等多种活性的黄酮类化合物47。Yu等48研究指出,藤黄酸通过调控PI3K/AKT和MAPK信号通路抑制HSC的增殖,抑制cyclin D1和细胞周期蛋白依赖性蛋白激酶4(cyclin-dependent kinase 4,CDK4)使细胞周期阻滞在G1期,并通过线粒体途径诱导HSC凋亡,下调肝内α- SMA、TGF-β、Col Ⅰ、TIMP-1、MMP-2的表达来抑制HF发展。

3.1.4 杨梅素

杨梅素是一种天然黄酮醇,广泛存在于柑橘类水果、蔬菜和草药中,具有抗氧化、神经保护、抗肿瘤等作用49。研究显示,杨梅素能降低α-SMA和Col Ⅰ的表达,抑制Smad2、Akt、ERK、JNK和p38 MAPK的磷酸化,证实杨梅素通过抑制TGF-β/血小板衍生生长因子BB(platelet-derived grouth factor subunit B,PDGF-BB)诱导的Smad2/Akt/MAPK磷酸化来抑制小鼠HSC的活化、增殖、迁移和ECM的积累,从而发挥抗HF的治疗效果50

3.1.5 芹菜素

芹菜素是从芹菜、百里香和洋葱中提取的一种膳食类黄酮,具有抗纤维化、抗癌和抗炎等药理活性。Ji等51研究发现,芹菜素能上调p62、MMP2/TIMP1和PPARα的水平,降低Beclin-1、微管相关蛋白1轻链3Ⅱ/Ⅰ(microtubule-associated protein 1 light chain 3Ⅱ/Ⅰ,LC3Ⅱ/Ⅰ)/LC3Ⅰ、TGF-β1、p-Smad3和p-p38 MAPK的表达,说明了芹菜素可以通过TGF-β1/Smad3和p38 MAPK/过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated-receptor-α,PPARα)途径抑制HSC活化和自噬来改善HF。

3.1.6 斯皮诺素

斯皮诺素是从酸枣仁中分离得到的黄酮类化合物,具有镇静、抗癌和抗氧化损伤等作用52。Lin等42研究显示,斯皮诺素通过与孤儿核受体蛋白Nur77结合抑制ASK1和p38 MAPK磷酸化,下调IL-6、IL-1β、COLA1、α-SMA,抑制人肝星状细胞LX2和大鼠肝星状细胞HSC-6活化,在敲除Nur77后上述药理作用消失,证实了斯皮诺素通过靶向Nur77抑制ASK1/p38 MAPK信号通路,从而抑制炎症反应和HSC的活性,发挥抗HF作用。

3.2 皂苷类

3.2.1 薯蓣皂苷

薯蓣皂苷是一种皂苷类化合物,具有抗病毒、抗真菌、抗肿瘤和保肝等作用53。Gu等54研究发现,薯蓣皂苷可以通过增加核红细胞因子2相关因子2 [nuclear factor (erythroid-derived 2)-Like 2,Nrf2]的核易位,上调细胞寿命调节蛋白1 (sirtuin 1,Sirt1)、血红素加氧酶-1(heme oxygenase 1,HO-1)、谷氨酸半胱氨酸连接酶催化亚基(glutamate-cysteine ligase catalytic subunit,GCLC)和谷氨酸半胱氨酸连接酶修饰亚基(glutamate-cysteine ligase regulatory subunit,GCLM)的水平,从而抑制p38 MAPK的磷酸化,降低COL1A1、COL3A1、α-SMA和纤连蛋白(fibronectin,FN)的水平,发挥抗HF的作用。

3.2.2 三七皂苷R1

三七皂苷R1是中药三七的主要活性成分,具有抗炎、抗氧化等作用55。Gong等56发现,三七皂苷R1能显著抑制p65、ERK、JNK和p38 MAPK等蛋白的磷酸化,下调TIMP-1、Col Ⅰ、α-SMA的表达,上调PPAR-γ的表达水平,从而发挥抗氧化和抗炎作用,减轻大鼠的HF程度。

3.2.3 人参皂苷AD-2

人参皂苷AD-2是从人参和三七中分离得到的一种皂苷类化合物。研究显示,AD-2可降低Col Ⅰ和TIMP-1的表达,抑制IL-1β、caspase-1、IL-6和TNF-α等炎症因子的表达和ECM的沉积,下调ERK、JNK和p38 MAPK蛋白的磷酸化水平,同时增加MMP-13的表达,证实人参皂苷AD-2通过MAPK信号通路改善硫代乙酰胺诱导HF小鼠的炎症反应,从而减轻HF57

3.3 单萜类

3.3.1 香芹酚

香芹酚是中药佩兰中提取出的一种单萜酚,在抗真菌、抗肿瘤、抗炎、降血糖和神经保护等方面发挥作用58。Cai等59观察香芹酚对CCl4诱导的HF小鼠的影响,发现Masson和天狼猩红染色中炎症细胞浸润和纤维化瘢痕显著减少,谷丙转氨酶(alanine aminotransferase,ALT)、谷草转氨酶(aspartate aminotransferase,AST)、羟脯氨酸(hydroxyproline,HYP)、乳酸脱氢酶(lactate dehydrogenase,LDH)浓度显著降低,α-SMA、COL1A1、p-ERK1/2、p-JNK1/2和p-p38 MAPK等的表达减少,提示香芹酚可以通过调控MAPK通路缓解HF的进程。

3.3.2 京尼平苷

京尼平苷是栀子中主要的化学成分之一,是一种环烯醚萜类化合物,有抗骨质疏松、抗肿瘤、降血糖和保肝等功效60。研究表明,TGF-β诱导的小鼠正常肝细胞AML12细胞,上皮标志物表皮细胞黏附分子(epithelial cadherin,E-cadherin)表达水平降低,间充质标志物波形蛋白(vimentin)水平上升,出现了明显上皮细胞间充质转化(epithelial-mesenchymal transition,EMT),细胞形态转变为纺锤样间充质形态,Col Ⅰ、纤溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1,PAI-1)和FN水平显著上调,经京尼平苷处理后,以上指标均发生逆转,TGF-β1诱导的ERK1/2、Akt和Smad2/3的磷酸化得到抑制,表明京尼平苷可以通过调控TGFβ/Smad和ERK-MAPK s信号通路发挥保护肝细胞,缓解HF发展的作用61

3.4 木脂素类

3.4.1 五味子丙素

五味子丙素是从木兰科植物五味子中提取出的一种木脂素。Chen等62研究发现,五味子丙素可以抑制p38 MAPK和ERK的磷酸化,下调核因子κB激酶亚单位β(inhibitor of nuclear factor kappa B kinase β,IKKβ)、NF-κB p65和p-NF-κB p65蛋白水平,通过调节肝脏的脂质分布和抑制炎症反应,降低α-SMA、Col Ⅰ的表达,改善肝纤维化。

3.4.2 戈米辛D

戈米辛D是五味子中另一种木脂素类化合物。Wang等63将戈米辛D用于HF小鼠的治疗,发现戈米辛D可以抑制HSC增殖活化,促进HSC凋亡,通过与血小板衍生生长因子受体β(platelet-derived growth factor receptor β,PDGFRβ)结合抑制HF小鼠肝组织中p-PDGFRβ/PDGFRβ、p-AKT/AKT、p-ERK/ERK和p-p38/p38 MAPK蛋白的表达,下调α-SMA、Col Ⅰ蛋白水平,降低炎症因子IL-1β、IL-6、TNF-α、TGF-β和COX-2的水平,从而缓解CCl4诱导的HF。

3.4.3 五味子乙素

五味子乙素是五味子的主要活性成分之一,研究显示,五味子乙素能通过与Kupffer细胞中的大麻素受体2(cannabinoid receptor 2,CB2)结合抑制细胞极化,显著下调细胞中p38 MAPK和NF-κB信号通路上p38 MAPK、p65、IκBα蛋白的磷酸化水平,降低脂多糖诱导的RAW264.7细胞中IL-6、IL-1β、TNF-α和iNOS的水平,并通过靶向CB2抑制RAW264.7细胞诱导的HSC活化,表明五味子乙素可以通过发挥抗炎作用而减轻HF小鼠的HF程度64

3.4.4 五味子甲酯

五味子甲酯是从五味子中提取的具有保肝、抗炎、抗氧化、抗凋亡等作用的木脂素类化合物65。Wang等66研究发现,五味子甲酯能降低TNF-α、IL-6、IL-1β、Hyp、TGF-β1、α-SMA和COL1A1的水平,抑制转化生长因子-β活化激酶1(transforming growth factor beta-activated kinase 1,TAK1)、JNK、p38 MAPK和i -κB磷酸化,证实五味子甲酯通过TAK1/ MAPK和NF-κB信号通路改善了硫代乙酰胺诱导的HF小鼠的炎症反应,抑制HSC的活化,从而达到抑制HF进展的治疗效果。

3.5 其他类

3.5.1 和厚朴酚

和厚朴酚是从植物厚朴中提取的具有抗癌、镇痛和神经保护等作用的双酚类化合物67。研究显示,和厚朴酚能够降低ALT、AST、HYP、MDA、iNOS、α-SMA、NF-κB、TGF-β的表达,减少Smad2/3、JNK和p38 MAPK的磷酸化,同时增加谷胱甘肽(glutathione,GSH)、超氧化物歧化酶(superoxide dismutase,SOD)的表达,这表明了和厚朴酚能通过MAPK信号通路改善刀豆蛋白A诱导HF大鼠的炎症反应,抑制氧化应激反应,减少肝内的胶原沉积,而达到抑制HF进展的效果68

3.5.2 丹参酚酸B

丹参酚酸B是从丹参的根或根茎中提取出的水溶性物质69。Wu等70研究发现,丹参酚酸B可以抑制MAPK介导的P-Smad2/3L信号通路,降低α-SMA、Col Ⅰ、TGF-β1等蛋白的水平,减轻小鼠HF程度。

3.5.3 紫草素

紫草素是一种具有抗菌、抗氧化、抗肿瘤、抗炎等活性的天然萘醌类化合物71-72。Song等73研究显示,紫草素通过MAPK通路下调血小板活化因子(platelet-activating factor,PAF)的表达,诱导被TGF-β激活的HSC发生凋亡并抑制其自噬,从而阻断HF的发展进程。

3.5.4 黄芪多糖

黄芪多糖是从中药黄芪中提取的活性成分。Sun等74研究发现,黄芪多糖通过下调toll样受体4(toll-like receptor 4,TLR4)/JNK/NF-κB/髓样分化原反应蛋白88(myeloid differentiation primary response 88,MyD88)通路相关蛋白,减少炎症因子的产生,保护肝细胞以及抑制HSC的活化,减轻酒精诱导的肝损伤和纤维化程度。

4 总结与展望

HF是多种慢性肝病进展的共同病理过程。当HF持续进展至一定阶段,肝小叶结构会被异常沉积的ECM重新分割,形成假小叶,进一步加剧肝脏功能的损害75,导致患者病情恶化。目前,临床上对HF的治疗主要依赖于治疗引起肝损伤的基础疾病,以及应用肝细胞保护剂和抗炎药物来减轻肝损伤,促进纤维化肝组织的修复76。然而,现有的治疗效果并不理想。
近年来,中药因其多成分、多靶点、多途径的调控特性,在抗HF治疗中显示出显著的优势77。随着抗HF研究的深入,MAPK信号通路在HF的发生和发展中所起的调节作用受到越来越多关注。尽管如此,关于中药活性成分通过调节MAPK信号通路发挥抗HF作用的研究仍缺乏系统的整理和分析。因此,本文系统地整理了MAPK信号通路在HF调节中的作用机制,以及近年来中药活性成分通过MAPK信号通路治疗HF的相关研究进展,中药活性成分调控MAPK信号通路治疗HF的作用机制见中国知网本文增强出版附加材料。研究发现,中药活性成分可以通过调控MAPK信号通路,减轻肝脏的氧化应激和炎症反应,调节HSC的细胞周期,抑制HSC的增殖和自噬,促进HSC的凋亡,从而发挥抗HF的活性。
尽管中药活性成分通过MAPK信号通路在抗HF方面展现出良好的研究前景,但仍存在一些挑战和问题:(1)当前的研究主要集中在单一中药单体对特定疾病的作用机制上,而缺乏对不同中药单体之间的比较性研究,以及它们联合应用时的综合效应研究。(2)相关研究大多局限于细胞或动物实验阶段,缺乏临床研究验证,且未进行临床前安全评价,其潜在的不良反应和毒性作用尚需进一步研究和评估。(3)HF的病理机制极为复杂,涉及多条信号通路的相互作用。目前的研究尚未能明确多条信号通路间的关系,未来可能需要更多关注MAPK信号通路与其他信号通路的协同作用,以为深入理解HF的发病机制和开发新的治疗策略提供新的视角和思路。

References

1
Parola MPinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med201965: 37-55.
2
Wang SFriedman SL. Hepatic fibrosis: a convergent response to liver injury that is reversible[J]. J Hepatol202073(1): 210-211.
3
Hernandez-Gea VFriedman SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol20116: 425-456.
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver disease associated with obesity. Hepatic stellate cell activation represents a critical event in fibrosis because these cells become the primary source of extracellular matrix in liver upon injury. Use of cell-culture and animal models has expanded our understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease. As pathways of fibrogenesis are increasingly clarified, the key challenge will be translating new advances into the development of antifibrotic therapies for patients with chronic liver disease.
4
Kisseleva TBrenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol202118(3): 151-166.
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
5
Min MWRong YTian CZ, et al. Temporal integration of mitogen history in mother cells controls proliferation of daughter cells[J]. Science2020368(6496): 1261-1265.
Multicellular organisms use mitogens to regulate cell proliferation, but how fluctuating mitogenic signals are converted into proliferation-quiescence decisions is poorly understood. In this work, we combined live-cell imaging with temporally controlled perturbations to determine the time scale and mechanisms underlying this system in human cells. Contrary to the textbook model that cells sense mitogen availability only in the G cell cycle phase, we find that mitogenic signaling is temporally integrated throughout the entire mother cell cycle and that even a 1-hour lapse in mitogen signaling can influence cell proliferation more than 12 hours later. Protein translation rates serve as the integrator that proportionally converts mitogen history into corresponding levels of cyclin D in the G phase of the mother cell, which controls the proliferation-quiescence decision in daughter cells and thereby couples protein production with cell proliferation.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
6
Yue JCLópez JM. Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci202021(7): 2346.
7
周鑫, 王智, 何雪茹, 等. 潜在抗肝纤维化药物与靶点相关信号通路研究进展[J]. 临床肝胆病杂志202339(12): 2932-2941.
Zhou XWang ZHe XR, et al. Research advances in signaling pathways associated with potential anti-liver fibrosis drugs and targets[J]. J Clin Hepatol202339(12): 2932-2941.
8
Li WQLiu WHQian D, et al. Traditional Chinese medicine: an important source for discovering candidate agents against hepatic fibrosis[J]. Front Pharmacol202213: 962525.
9
Davis RJ. Signal transduction by the JNK group of MAP kinases[J]. Cell2000103(2): 239-252.
10
Cargnello MRoux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiol Mol Biol Rev201175(1): 50-83.
11
Jeon HTkacik EEck MJ. Signaling from RAS to RAF: the molecules and their mechanisms[J]. Annu Rev Biochem202493(1): 289-316.
12
Plotnikov AZehorai EProcaccia S, et al. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation[J]. Biochim Biophys Acta20111813(9): 1619-1633.
13
Meloche SPouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition[J]. Oncogene200726(22): 3227-3239.
The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.
14
Ewings KEHadfield-Moorhouse KWiggins CM, et al. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL[J]. EMBO J200726(12): 2856-2867.
The proapoptotic protein Bim is expressed de novo following withdrawal of serum survival factors. Here, we show that Bim-/- fibroblasts and epithelial cells exhibit reduced cell death following serum withdrawal in comparison with their wild-type counterparts. In viable cells, Bax associates with Bcl-2, Bcl-x(L) and Mcl-1. Upon serum withdrawal, newly expressed Bim(EL) associates with Bcl-x(L) and Mcl-1, coinciding with the dissociation of Bax from these proteins. Survival factors can prevent association of Bim with pro-survival proteins by preventing Bim expression. However, we now show that even preformed Bim(EL)/Mcl-1 and Bim(EL)/Bcl-x(L) complexes can be rapidly dissociated following activation of ERK1/2 by survival factors. The dissociation of Bim from Mcl-1 is specific for Bim(EL) and requires ERK1/2-dependent phosphorylation of Bim(EL) at Ser(65). Finally, ERK1/2-dependent dissociation of Bim(EL) from Mcl-1 and Bcl-x(L) may play a role in regulating Bim(EL) degradation, since mutations in the Bim(EL) BH3 domain that disrupt binding to Mcl-1 cause increased turnover of Bim(EL). These results provide new insights into the role of Bim in cell death and its regulation by the ERK1/2 survival pathway.
15
Zou JRLei TTGuo P, et al. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review)[J]. Mol Med Rep201919(2): 759-770.
Senescence is a result of cellular stress and is a potential mechanism for regulating cancer. As a member of the mitogen-activated protein kinase family, ERK1/2 (extracellular signal-regulated protein kinase) has an important role in delivering extracellular signals to the nucleus, and these signals regulate the cell cycle, cell proliferation and cell development. Previous studies demonstrated that ERK1/2 is closely associated with cell aging; however other previous studies suggested that ERK1/2 exerts an opposite effect on aging models and target proteins, even within the same cell model. Recent studies demonstrated that the effect of ERK1/2 on aging is likely associated with its target proteins and regulators, negative feedback loops, phosphorylated ERK1/2 factors and ERK1/2 translocation from the cytoplasm to the nucleus. The present review aims to examine the mechanism of ERK1/2 and discuss its role in cellular outcomes and novel drug development.
16
Cuadrado ANebreda A. Mechanisms and functions of p38 MAPK signalling[J]. Biochem J2010429(3): 403-417.
The p38 MAPK (mitogen-activated protein kinase) signalling pathway allows cells to interpret a wide range of external signals and respond appropriately by generating a plethora of different biological effects. The diversity and specificity in cellular outcomes is achieved with an apparently simple linear architecture of the pathway, consisting of a core of three protein kinases acting sequentially. In the present review, we dissect the molecular mechanisms underlying p38 MAPK functions, with special emphasis on the activation and regulation of the core kinases, the interplay with other signalling pathways and the nature of p38 MAPK substrates as a source of functional diversity. Finally, we discuss how genetic mouse models are facilitating the identification of physiological functions for p38 MAPKs, which may impinge on their eventual use as therapeutic targets.
17
Dhanasekaran DNReddy EP. JNK-signaling: a multiplexing hub in programmed cell death[J]. Genes Cancer20178(9/10): 682-694.
18
Seitz THellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis[J]. Liver Int202141(6): 1201-1215.
19
郝少东, 刘彩萍, 李月廷, 等. 肝星状细胞活化相关信号通路在肝纤维化中的研究进展[J]. 胃肠病学和肝病学杂志202231(2): 131-135.
Hao SDLiu CPLi YT, et al. Research progress of hepatic stellate cell activation-related signal pathways in liver fibrosis[J]. Chin J Gastroenterol Hepatol202231(2): 131-135.
20
Marra FArrighi MCFazi M, et al. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor’s actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat[J]. Hepatology199930(4): 951-958.
Upon liver injury, hepatic stellate cells (HSC) show increased proliferation, motility, and extracellular matrix (ECM) production. The extracellular signal-regulated kinases (ERK) control different functions in a cell-specific manner. In this study, we evaluated the role of ERK activation in cultured HSC stimulated with platelet-derived growth factor (PDGF) and after induction of liver injury in vivo. HSC were isolated from normal human liver tissue, cultured on plastic, and used in their myofibroblast-like phenotype. In in vivo experiments, HSC were isolated from normal rats or at different time points after a single intragastric administration of CCl(4). Nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, reduced PDGF-induced activation of ERK in a dose-dependent fashion. Suppression of ERK activation was associated with complete inhibition of HSC proliferation and with a 57% reduction in chemotaxis. In the presence of the ERK inhibitor, binding of the AP-1 complex and of STAT1 to the related regulatory elements was inhibited. The inhibition of the DNA binding activity of STAT1 was mediated by a reduction in PDGF-induced tyrosine phosphorylation. Expression of c-fos in response to PDGF was also reduced, but not suppressed, by treatment with PD98059. In HSC isolated from CCl(4)-treated rats, ERK activity increased as early as 6 hours following liver damage, and declined thereafter. The results of this study indicate that ERK activation regulates proliferation and chemotaxis of HSC, and modulates nuclear signaling. Acute liver damage in vivo leads to activation of ERK in HSC.
21
Jeng KSLu SJWang CH, et al. Liver fibrosis and inflammation under the control of ERK2[J]. Int J Mol Sci202021(11): 3796.
22
郑人源, 蒋明德, 梅浙川, 等. 肝星状细胞增殖与p38丝裂原活化蛋白激酶信号传导通路的关系[J]. 中国组织工程研究与临床康复201115(20): 3711-3714.
Zheng RYJiang MDMei ZC, et al. Correlation between acetaldehyde-induced proliferation of hepatic stellate cells and p38 mitogen-activated protein kinase signal transduction pathway[J]. J Clin Rehabil Tissue Eng Res201115(20): 3711-3714.
23
郑人源, 张琴, 卓强, 等. 阻断p38MAPK信号通路对大鼠肝星状细胞活性及c-myc蛋白表达的影响[J]. 重庆医学201443(25): 3307-3310.
Zheng RYZhang QZhuo Q, et al. Effect of blocking p38MAPK signal pathway on activity of rat hepatic stellate cells and c-myc protein expression[J]. Chongqing Med201443(25): 3307-3310.
24
张亚平, 姚希贤, 赵霞. JNK信号转导通路对白细胞介素-1转促肝星状细胞增殖的调控作用[J]. 中国病理生理杂志200622(6): 1138-1141.
Zhang YPYao XXZhao X. Regulatory effects of JNK transduction on interleukin-1β-induced proliferation in rat hepatic stellate cells[J]. Chin J Pathophysiol200622(6): 1138-1141.
25
Hammerich LTacke F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol202320(10): 633-646.
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.© 2023. Springer Nature Limited.
26
黄甫静, 张金娟, 董莉, 等. 黄水枝醇提物对CCl4致小鼠肝纤维化的改善作用及其机制初探[J]. 中国药房202132(14): 1685-1691.
Huang FJZhang JJDong L, et al. Preliminary study on improvement effect of Tiarella polyphylla ethanol extract on CCl4-induced hepatic fibrosis in mice and its mechanism[J]. China Pharm202132(14): 1685-1691.
27
陈思思, 王俊, 郑杭生. 三七皂苷类成分防治肝纤维化的研究进展[J]. 中成药202345(11): 3688-3692.
Chen SSWang JZheng HS. Research progress of Panax notoginseng saponins in preventing and treating liver fibrosis[J]. Chin Tradit Pat Med202345(11): 3688-3692.
28
胡晓霞, 王艳, 王妮. p38MAPK、NF-38与氧化应激在肝纤维化中作用[J]. 中国公共卫生201329(6): 834-836.
Hu XXWang YWang N. Effect of p38MAPK, NF-κB and oxidative stress in liver fibrosis[J]. Chin J Public Health201329(6): 834-836.
29
潘富珍, 曹洪欣, 张永生, 等. 清肝健脾活血方通过调控M1/M2型巨噬细胞治疗肝纤维化大鼠的作用机制分析[J]. 中国实验方剂学杂志202329(21): 94-102.
Pan FZCao HXZhang YS, et al. Analysis of mechanism of Qinggan Jianpi Huoxue prescription in treatment of hepatic fibrosis rats by regulating M1/M2 macrophages[J]. Chin J Exp Tradit Med Formulae202329(21): 94-102.
30
蔡强, 于婷, 唐海姣, 等. 人参皂苷Rh2调节TNF/MAPK和NF-κB信号通路抑制TGF-β1诱导的LX-2细胞活化[J]. 中药新药与临床药理202233(8):1047-1054.
Cai QYu TTang HJ, et al. Ginsenoside Rh2 regulates TNF/MAPK and NF-κB signaling pathway to inhibit TGF-β1 induced activation of LX-2 cells[J]. Tradit Chin Drug Res Clin Pharmacol202233(8): 1047-1054.
31
Ramos-Tovar EMuriel P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver[J]. Antioxidants20209(12): 1279.
32
He WHShi FZhou ZW, et al. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver[J]. Drug Des Devel Ther20159: 3989-4104.
33
Houglum KVenkataramani ALyche K, et al. A pilot study of the effects of d-alpha-tocopherol on hepatic stellate cell activation in chronic hepatitis C[J]. Gastroenterology1997113(4): 1069-1073.
Oxidative stress mediates activation and stimulates collagen production of cultured hepatic stellate (Ito) cells. The aim of this study was to assess whether oxidative stress contributes to hepatic fibrogenesis in chronic hepatitis C.In liver biopsy specimens of patients with chronic hepatitis C, the following fibrogenesis cascade was analyzed: (1) oxidative stress, determined by the presence of malondialdehyde protein adducts; (2) activation of stellate cells as indicated by their expression of alpha-smooth muscle actin; (3) stimulation of c-myb expression in stellate cells, a critical step in the activation of these cells; and (4) induction of collagen gene expression as detected by in situ hybridization.Treatment with d-alpha-tocopherol (1200 IU/day for 8 weeks) in 6 of these patients, who were refractory to interferon therapy, prevented the fibrogenesis cascade observed before antioxidant treatment. In addition, d-alpha-tocopherol treatment significantly decreased the carbonyl modifications of plasma proteins, a sensitive index of oxidative stress. However, 8 weeks of d-alpha-tocopherol treatment did not significantly affect serum alanine aminotransferase levels, hepatitis C virus titers, or histological degree of hepatocellular inflammation or fibrosis.These data suggest that enhanced oxidative stress initiates a fibrogenesis cascade in the liver of patients with chronic hepatitis C.
34
Takata TAraki STsuchiya Y, et al. Oxidative stress orchestrates MAPK and nitric-oxide synthase signal[J]. Int J Mol Sci202021(22): 8750.
35
Parola MRobino G. Oxidative stress-related molecules and liver fibrosis[J]. J Hepatol200135(2): 297-306.
36
Chen HHGan QXYang CY, et al. A novel role of glutathione S-transferase A3 in inhibiting hepatic stellate cell activation and rat hepatic fibrosis[J]. J Transl Med201917(1): 280.
Glutathione S-transferase A3 (GSTA3) is known as an antioxidative protease, however, the crucial role of GSTA3 in liver fibrosis remains unclear. As a recently we developed water-soluble pyridone agent with antifibrotic features, fluorofenidone (AKF-PD) can attenuate liver fibrosis, present studies were designed to explore the role of GSTA3 in liver fibrosis and its modulation by AKF-PD in vivo and in vitro.Rats liver fibrosis models were induced by dimethylnitrosamine (DMN) or carbon tetrachloride (CCl4). The two activated hepatic stellate cells (HSCs) lines, rat CFSC-2G and human LX2 were treated with AKF-PD respectively. The lipid peroxidation byproduct malondialdehyde (MDA) in rat serum was determined by ELISA. The accumulation of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescein fluorescence analysis. The expression of α-smooth muscle actin (α-SMA), fibronectin (FN), and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 beta (GSK-3β) were detected by western blotting (WB).GSTA3 was substantially reduced in the experimental fibrotic livers and transdifferentiated HSCs. AKF-PD alleviated rat hepatic fibrosis and potently inhibited HSCs activation correlated with restoring GSTA3. Moreover, GSTA3 overexpression prevented HSCs activation and fibrogenesis, while GSTA3 knockdown enhanced HSCs activation and fibrogenesis resulted from increasing accumulation of ROS and subsequent amplified MAPK signaling and GSK-3β phosphorylation.We demonstrated firstly that GSTA3 inhibited HSCs activation and liver fibrosis through suppression of the MAPK and GSK-3β signaling pathways. GSTA3 may represent a promising target for potential therapeutic intervention in liver fibrotic diseases.
37
Canbay AFriedman SGores GJ. Apoptosis: the nexus of liver injury and fibrosis[J]. Hepatology200439(2): 273-278.
38
Debacq-Chainiaux FBoilan EDedessus Le Moutier J, et al. p38(MAPK) in the senescence of human and murine fibroblasts[J]. Adv Exp Med Biol2010694: 126-137.
Oncogenic and environmental stresses, such as reactive oxygen species, UV radiation etc, can induce premature cellular senescence without critical telomere shortening. The role of the Ras/Raf/ERK signal transduction cascade in this process has been previously established, but recent evidence also indicates a critical role of the p38 MAP kinases pathway. Oncogenic and environmental stresses impinge upon the p38(MAPK) pathway, suggesting a major role of this pathway in senescence induced by stresses. Prematurely senescent cells are most likely to appear in several age-relatedpathologies associated with a stressful environment and/or the release of pro-inflammatory cytokines.
39
Huang HLHsieh MJChien MH, et al. Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells[J]. PLoS One20149(6): e98943.
40
Wang YYWang RWang YJ, et al. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling[J]. Drug Des Devel Ther20159: 6303-6317.
41
Chong SGChen GDang ZS, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered202213(4): 8747-8758.
is a small parasite that causes alveolar echinococcosis. It primarily induces liver disorder, such as liver fibrosis and even liver cancer, which severely endangers human lives. This study aims to explore the efficacy of soluble antigen in preventing and alleviating alveolar echinococcosis-induced liver fibrosis and determine the underlying mechanism. We first identified the optimal dose and time of soluble antigen. The protein levels of key genes in the RhoA-MAPK signaling pathway were remarkably upregulated in RAW264.7 and Ana-1 cells induced with 80 μg/mL soluble antigen for 8 h. Interestingly, the upregulated expression levels were remarkably reversed by the RhoA, JNK, ERK, or p38 inhibitor, confirming the significance of the RhoA-MAPK signaling pathway. In addition, the relative contents of M2 polarization markers IL-10 and Arg-1 in macrophages induced with 80 μg/mL soluble antigen for 8 h increased, whereas those of M1 polarization markers IL-12 and NOS-2 decreased. Mouse hepatic stellate cells were the key components of the hepatocellular carcinoma tumor microenvironment. Hepatic stellate cells were activated by soluble antigen and transformed into the morphology of myofibroblasts in response to liver disorders. By detecting the marker of myofibroblast formation, RhoA inhibitor remarkably reduced the positive expression of α-SMA in mouse hepatic stellate cells induced with soluble antigen. Therefore, soluble antigen remarkably activated the RhoA-MAPK pathways in macrophages, further inducing the polarization of macrophages and ultimately causing liver fibrosis.We hypothesize that infection with activates the RhoA-MAPK signaling pathway and subsequently induces macrophage polarization to promote hepatic stellate cells activation leading to liver fibrosis.To investigate the mechanism by which soluble antigen of affects liver fibrosis through the RhoA-MAPK pathway driving polarization of macrophages.To identify new pathways of intervention and drug targets for the regulation of macrophage polarity phenotype switching and the attenuation or inhibition of the development and treatment of liver fibrosis caused by infection.
42
Lin GLi WBHong WB, et al. Spinosin inhibits activated hepatic stellate cell to attenuate liver fibrosis by targeting Nur77/ASK1/p38 MAPK signaling pathway[J]. Eur J Pharmacol2024966: 176270.
43
Yang DYWang TCLong M, et al. Quercetin: its main pharmacological activity and potential application in clinical medicine[J]. Oxid Med Cell Longev20202020: 8825387.
44
Wang RZhang HWang YY, et al. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling[J]. Int Immunopharmacol201747: 126-133.
45
Gong GGuan YYZhang ZL, et al. Isorhamnetin: a review of pharmacological effects[J]. Biomedecine Pharmacother2020128: 110301.
46
Liu NFeng JLu XY, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways[J]. Mediators Inflamm20192019: 6175091.
47
Liu YLChen YCLin LF, et al. Gambogic acid as a candidate for cancer therapy: a review[J]. Int J Nanomedicine202015: 10385-10399.
48
Yu ZLJv YCai L, et al. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90[J]. Toxicol Appl Pharmacol2019371: 63-73.
49
Rahmani AHAlmatroudi AAllemailem KS, et al. Myricetin: a significant emphasis on its anticancer potential via the modulation of inflammation and signal transduction pathways[J]. Int J Mol Sci202324(11): 9665.
50
Geng YSun QLi W, et al. The common dietary flavonoid myricetin attenuates liver fibrosis in carbon tetrachloride treated mice[J]. Mol Nutr Food Res201761(4): 1600392.
51
Ji JYu QDai WQ, et al. Apigenin alleviates liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-β1/Smad3 and p38/PPARα pathways[J]. PPAR Res20212021: 6651839.
52
Kuang XLShe GSMa T, et al. The pharmacology, pharmacokinetics, and toxicity of spinosin: a mini review[J]. Front Pharmacol202213: 938395.
53
Bandopadhyay SAnand UGadekar VS, et al. Dioscin: a review on pharmacological properties and therapeutic values[J]. Biofactors202248(1): 22-55.
54
Gu LNTao XFXu YW, et al. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway[J]. Toxicol Appl Pharmacol2016292: 19-29.
55
Liu HYang JQYang WQ, et al. Focus on notoginsenoside R1 in metabolism and prevention against human diseases[J]. Drug Des Devel Ther202014: 551-565.
56
Gong XShan LLCao SS, et al. Notoginsenoside R1, an active compound from Panax notoginseng, inhibits hepatic stellate cell activation and liver fibrosis via MAPK signaling pathway[J]. Am J Chin Med202250(2): 511-523.
57
Su GYLi ZYWang R, et al. Signaling pathways involved in p38-ERK and inflammatory factors mediated the anti-fibrosis effect of AD-2 on thioacetamide-induced liver injury in mice[J]. Food Funct201910(7): 3992-4000.
58
Sharifi-Rad MVaroni EMIriti M, et al. Carvacrol and human health: a comprehensive review[J]. Phytother Res201832(9): 1675-1687.
Carvacrol (CV) is a phenolic monoterpenoid found in essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), pepperwort (Lepidium flavum), wild bergamot (Citrus aurantium bergamia), and other plants. Carvacrol possesses a wide range of bioactivities putatively useful for clinical applications such antimicrobial, antioxidant, and anticancer activities. Carvacrol antimicrobial activity is higher than that of other volatile compounds present in essential oils due to the presence of the free hydroxyl group, hydrophobicity, and the phenol moiety. The present review illustrates the state-of-the-art studies on the antimicrobial, antioxidant, and anticancer properties of CV. It is particularly effective against food-borne pathogens, including Escherichia coli, Salmonella, and Bacillus cereus. Carvacrol has high antioxidant activity and has been successfully used, mainly associated with thymol, as dietary phytoadditive to improve animal antioxidant status. The anticancer properties of CV have been reported in preclinical models of breast, liver, and lung carcinomas, acting on proapoptotic processes. Besides the interesting properties of CV and the toxicological profile becoming definite, to date, human trials on CV are still lacking, and this largely impedes any conclusions of clinical relevance.Copyright © 2018 John Wiley & Sons, Ltd.
59
Cai SYWu LJYuan SY, et al. Carvacrol alleviates liver fibrosis by inhibiting TRPM7 and modulating the MAPK signaling pathway[J]. Eur J Pharmacol2021898: 173982.
60
Liu LPWu QChen YP, et al. Updated pharmacological effects, molecular mechanisms, and therapeutic potential of natural product geniposide[J]. Molecules202227(10): 3319.
61
Park JHYoon JLee KY, et al. RETRACTED: Effects of geniposide on hepatocytes undergoing epithelial-mesenchymal transition in hepatic fibrosis by targeting TGFβ/Smad and ERK-MAPK signaling pathways[J]. Biochimie2015113: 26-34.
62
Chen PPWang RLiu FB, et al. Schizandrin C regulates lipid metabolism and inflammation in liver fibrosis by NF-κB and p38/ERK MAPK signaling pathways[J]. Front Pharmacol202314: 1092151.
63
Wang RLiu FBChen PP, et al. Gomisin D alleviates liver fibrosis through targeting PDGFRβ in hepatic stellate cells[J]. Int J Biol Macromol2023235: 123639.
64
Wang HQWan ZZhang QQ, et al. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl(4)- induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway[J]. Phytomedicine202298: 153960.
65
Xiao ZHXiao WLi GL. Research progress on the pharmacological action of schisantherin A[J]. Evid Based Complement Alternat Med20222022: 6420865.
66
Wang HLChe JYCui K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1 mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo [J]. Phytomedicine202188: 153609.
67
Rauf AOlatunde AImran M, et al. Honokiol: a review of its pharmacological potential and therapeutic insights[J]. Phytomedicine202190: 153647.
68
Elfeky MGMantawy EMGad AM, et al. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways[J]. Life Sci2020240: 117096.
69
Xiao ZLiu WMu YP, et al. Pharmacological effects of salvianolic acid B against oxidative damage[J]. Front Pharmacol202011: 572373.
70
Wu CChen WYDing HY, et al. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro[J]. Life Sci2019239: 116881.
71
李渊深, 索艳晖, 谢延平, 等. 紫草素调节NF-调节9, 2信号通路对膝关节骨性关节炎大鼠炎症反应的影响[J]. 中国免疫学杂志202339(12): 2577-2581.
Li YSSuo YHXie YP, et al. Effect of shikonin on inflammatory response in rats with knee osteoarthritis by regulating NF-κB/ERK signaling pathway[J]. Chin J Immunol202339(12): 2577-2581.
72
徐洋, 李硕, 阴佳明, 等. 紫草素通过抑制STAT3-MMP2信号通路抑制胃癌MGC803细胞的迁移能力[J]. 中国医院药学杂志202141(17): 1718-1722.
Abstract
目的:研究紫草素对人胃癌MGC803细胞迁移能力的影响,并探究其作用机制。方法:不同浓度的紫草素(0,1,2 μg&#183;mL<sup>-1</sup>)作用于人胃癌MGC803细胞,利用Transwell小室实验检测紫草素对人胃癌MGC803细胞侵袭和迁移能力的影响。进一步利用实时定量PCR和Western blot技术,检测不同浓度紫草素作用的胃癌细胞中信号传导和转录激活因子3(signal transducer and activator of transcription,STAT3)的总蛋白(t-STAT3)、磷酸化STAT3(p-STAT3)及基质金属蛋白酶2(matrix metalloproteinase-2,MMP2)的mRNA和蛋白表达情况;最后利用Transwell小室实验检测紫草素和STAT3磷酸化抑制剂Stattic对人胃癌MGC803细胞迁移能力的影响。结果:不同浓度梯度的紫草素作用于细胞24 h后,胃癌MGC803细胞的迁移和侵袭能力降低,p-STAT3及MMP2的mRNA和蛋白的表达水平降低,并呈现出浓度依赖性;紫草素通过抑制胃癌MGC803细胞中STAT3的磷酸化进而抑制MMP2蛋白表达;紫草素通过抑制STAT3的磷酸化抑制胃癌MGC803细胞的迁移能力。结论:紫草素可通过抑制STAT3-MMP2信号通路抑制人胃癌MGC803细胞的迁移能力。
Xu YLi SYin JM, et al. Shikonin inhibits migration of gastric cancer MGC803 cells by inhibiting STAT3-MMP2 signaling pathway[J]. Chin J Hosp Pharm202141(17): 1718-1722.
<b>OBJECTIVE</b> To explore the mechanism of shikonin on the migratory capability of human gastric cancer cells MGC803.<b>METHODS</b> Human gastric cancer MGC803 cells were treated with different concentrations of shikonin (0, 1, 2 <i>μ</i>g&#183;mL<sup>-1</sup>) and the effects of shikonin on the invasion and migratory capability of MGC803 cells were detected by Transwell chamber assay. The cellular expressions of t-STAT3, p-STAT3 and MMP2 mRNA and protein were detected by real-time quantitative polymerase chain reaction (PCR) and Western blot. Then Transwell chamber assay was utilized for detecting the effects of shikonin and STAT3 phosphorylation inhibitor Stattic on cellular migratory capability.<b>RESULTS</b> After 24 h treatments of serial shikonin, the migration and invasion capabilities declined and the mRNA and protein expression levels of p-STAT3 and MMP2 dropped in a concentration-dependent manner. Shikonin down-regulated the expression of MMP2 protein by suppressing STAT3 phosphorylation. And cellular migratory capability declined through a lowered phosphorylation of STAT3.<b>CONCLUSION</b> Shikonin may suppress the migratory capability of human gastric cancer MGC803 cells by through a down-regulation of the STAT3-MMP2 signaling pathway.
73
Song MZhang HChen ZT, et al. Shikonin reduces hepatic fibrosis by inducing apoptosis and inhibiting autophagy via the platelet-activating factor-mitogen-activated protein kinase axis[J]. Exp Ther Med202121(1): 28.
Liver fibrosis is a tissue repair process that occurs following various types of chronic liver injury and can develop into liver cirrhosis, portal hypertension or liver cancer without effective treatment. Shikonin has anti-inflammatory, antiviral and antitumor properties. Furthermore, shikonin has an additional effect of antagonizing tissue and organ fibrosis. The aim of the present study was to evaluate the mechanisms of action underlying shikonin against liver fibrosis. Cell viability was assessed using the Cell Counting Kit-8 and EdU incorporation assays. Protein and mRNA expression levels were measured via western blotting and immunofluorescence assays, respectively. Apoptosis was examined via flow cytometry and autophagy via transmission electron microscopy. Compared with the control group, shikonin did not significantly alter LX-2 cell viability at 0.2 µmol/ml, which was used as the intervention concentration. However, shikonin significantly inhibited fibrosis, as indicated by a decrease in the expression of α-smooth muscle actin and collagen-I in the TGF-β + shikonin group compared with the TGF-β group. The results indicated that shikonin potentially inhibited fibrosis via promoting cell apoptosis and inhibiting autophagy. Additionally, the results of the present study indicated that shikonin downregulated the expression levels of platelet-activating factor (PAF) in TGF-β-treated cells, which subsequently activated the MAPK signaling pathway, leading to enhanced cell apoptosis and reduced autophagy. Collectively, the present study indicated that shikonin promoted cell apoptosis and suppressed autophagy via the PAF-MAPK axis in LX-2 cells, thus blocking the development of fibrosis. The results of the present study may provide a potential therapeutic strategy for liver fibrosis.Copyright © 2020, Spandidos Publications.
74
Sun XZheng YQTian YQ, et al. Astragalus polysaccharide alleviates alcoholic-induced hepatic fibrosis by inhibiting polymerase I and transcript release factor and the TLR4/JNK/NF-κB/MyD88 pathway[J]. J Ethnopharmacol2023314: 116662.
75
吴姗姗, 王振常, 黎妍, 等. 中药复方壮肝逐瘀煎对肝纤维化模型大鼠微循环的影响[J]. 中华中医药学刊202038(1): 151-156, 277.
Wu SSWang ZCLi Y, et al. Effect of Zhuanggan Zhuyu Decoction on microcirculation in rat model of hepatic fibrosis[J]. Chin Arch Tradit Chin Med202038(1): 151-156, 277.
76
陆伦根, 尤红, 谢渭芬, 等. 肝纤维化诊断及治疗共识(2019年)[J]. 实用肝脏病杂志201922(6): 793-803.
Lu LGYou HXie WF, et al. Consensus on the diagnosis and therapy of hepatic fibrosis[J]. J Pract Hepatol201922(6): 793-803.
77
薛文静, 苏子衡, 张露蓉, 等. 清肝益脾胶囊对四氯化碳诱导大鼠肝纤维化的保护作用及对肠道菌群的影响[J]. 中国医院药学杂志202343(24): 2749-2755.
Abstract
目的:研究清肝益脾胶囊(Qinggan Yipi Capsules,简称QgYp)对四氯化碳诱导大鼠肝纤维化(hepatic fibrosis,HF)的保护作用,并初步探讨其通过调节肠道菌群改善HF的机制。方法:36只SD大鼠随机分成正常组、模型组、QgYp低剂量组、QgYp中剂量组、QgYp高剂量组和秋水仙碱组,腹腔注射四氯化碳油溶液构建HF大鼠模型,第4周后给予药物干预直至第8周;采用HE、Masson染色,光镜下观察病理变化;采用全自动生化分析仪检测血清谷草转氨酶(AST)、谷丙转氨酶(ALT)含量;采用ELISA检测血清透明质酸(HA)、层黏连蛋白(LN)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(Ⅳ-C)含量。另取24只SD大鼠随机分为正常组、模型组、QgYp中剂量组,同上方法建模与给药,于8周后收集盲肠内容物,采用16S rRNA测序技术检测肠道菌群。结果:与模型组相比,QgYp各组大鼠肝脏系数显著降低(P<0.05),肝组织纤维病变和胶原纤维沉积显著改善(P<0.05);QgYp中剂量组、QgYp高剂量组ALT、AST、HA、PCⅢ、LN、Ⅳ-C含量显著降低(P<0.05),且2组差异无统计学意义(P>0.05)。肠道菌群检测结果显示,QgYp可增加HF大鼠肠道菌群的丰富度和多样性,改变肠道菌群组成(P<0.01),增加有益菌g__norank_f__norank_o__Clostridia_UCG-014、阿克曼氏菌属的丰度占比,降低有害菌罗姆布茨菌属、经黏液真杆菌和狭义梭菌属1的丰度占比。结论:QgYp可改善四氯化碳诱导的大鼠肝纤维化,其机制与调节肠道菌群多样性和丰度相关。
Xue WJSu ZHZhang LR, et al. The protective effect of Qinggan Yipi Capsules on carbon tetrachloride-induced hepatic fibrosis in rats and its impact on gut microbiota[J]. Chin J Hosp Pharm202343(24): 2749-2755.
<b>OBJECTIVE</b> To investigate the protective effect of Qinggan Yipi Capsules (QgYp) on carbon tetrachloride-induced hepatic fibrosis (HF) in rats and explored the potential mechanism of QgYp in improving HF through regulating intestinal microbiota. <b>METHODS</b> A total of 36 Sprague-Dawley rats were randomly divided into the following groups:normal group, model group, low-dose QgYp group, medium-dose QgYp group, high-dose QgYp group, and colchicine group. Hepatic fibrosis was induced by intraperitoneal injection of carbon tetrachloride oil solution. After 4 weeks, drug intervention was initiated and continued until the 8th week. Pathological changes were observed under a light microscope using HE and Masson staining. The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were determined using an automated biochemical analyzer. The serum levels of hyaluronic acid (HA), laminin (LN), procollagen type Ⅲ (PCⅢ), and collagen type Ⅳ (Ⅳ-C) were measured using ELISA. Additionally, another 24 Sprague-Dawley rats were randomly assigned to the normal group, model group, and medium-dose QgYp group. The same methods of modeling and drug administration as mentioned above were used, and after 8 weeks, cecal contents were collected for analysis of gut microbiota using 16S rRNA sequencing technology. <b>RESULTS</b> Compared to the model group, the rats in the various QgYp groups exhibited a significant increase in body weight (<i>P</i><0.05). Additionally, the liver weight and liver coefficient significantly decreased (<i>P</i><0.05). The histopathological examination revealed a significant improvement in liver tissue fibrosis and collagen fiber deposition (<i>P</i><0.05). In the QgYp moderate-dose group and QgYp high-dose group, the levels of ALT, AST, HA, LN、PCⅢ, and Ⅳ-C were significantly reduced (<i>P</i><0.05), and there was no significant difference between the two groups. The analysis of gut microbiota demonstrated that QgYp increased the richness and diversity of the gut microbiota in HF rats and altered the composition of the gut microbiota (<i>P</i><0.01). QgYp supplementation led to an increased abundance of beneficial bacteria, such as <i>g__norank_f__norank_o__Clostridia_UCG-014</i> and Akkermansia, while decreasing the abundance of harmful bacteria, such as <i>Romboutsia, Blautia</i>, and <i>Clostridium sensu stricto</i> 1. <b>CONCLUSION</b> QgYp exhibits the potential to ameliorate carbon tetrachloride-induced hepatic fibrosis in rats, and its mechanism is associated with the modulation of gut microbiota diversity and abundance.
PDF(1256 KB)

123

Accesses

0

Citation

Detail

Sections
Recommended

/